Reformulated Reciprocal Degree Distance and Reciprocal Degree Distance of the Complement of the Mycielskian Graph and Generalized Mycielskian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree distance index of the Mycielskian and its complement

In this paper, we determine the degree distance of the complement of arbitrary Mycielskian graphs. It is well known that almost all graphs have diameter two. We determine this graphical invariant for the Mycielskian of graphs with diameter two.

متن کامل

degree distance index of the mycielskian and its complement

in this paper, we determine the degree distance of the complement of arbitrary mycielskian graphs. it is well known that almost all graphs have diameter two. we determine this graphical invariant for the mycielskian of graphs with diameter two.

متن کامل

reciprocal degree distance of some graph operations

the reciprocal degree distance (rdd)‎, ‎defined for a connected graph $g$ as vertex-degree-weighted sum of the reciprocal distances‎, ‎that is‎, ‎$rdd(g) =sumlimits_{u,vin v(g)}frac{d_g(u)‎ + ‎d_g(v)}{d_g(u,v)}.$ the reciprocal degree distance is a weight version of the harary index‎, ‎just as the degree distance is a weight version of the wiener index‎. ‎in this paper‎, ‎we present exact formu...

متن کامل

Reciprocal Degree Distance of Grassmann Graphs

Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u  d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.

متن کامل

Product version of reciprocal degree distance of composite graphs

A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2019

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2019/3764981